“Hit‐and‐Run” leaves its mark: Catalyst transcription factors and chromatin modification
نویسندگان
چکیده
Understanding how transcription factor (TF) binding is related to gene regulation is a moving target. We recently uncovered genome-wide evidence for a "Hit-and-Run" model of transcription. In this model, a master TF "hits" a target promoter to initiate a rapid response to a signal. As the "hit" is transient, the model invokes recruitment of partner TFs to sustain transcription over time. Following the "run", the master TF "hits" other targets to propagate the response genome-wide. As such, a TF may act as a "catalyst" to mount a broad and acute response in cells that first sense the signal, while the recruited TF partners promote long-term adaptive behavior in the whole organism. This "Hit-and-Run" model likely has broad relevance, as TF perturbation studies across eukaryotes show small overlaps between TF-regulated and TF-bound genes, implicating transient TF-target binding. Here, we explore this "Hit-and-Run" model to suggest molecular mechanisms and its biological relevance.
منابع مشابه
GR and HMGB1 interact only within chromatin and influence each other's residence time.
Most nuclear proteins reside on a specific chromatin site only for seconds or less. The hit-and-run model of transcriptional control maintains that transcription complexes are assembled in a stochastic fashion from freely diffusible proteins; this contrasts to models involving stepwise assembly of stable holo complexes. However, the chances of forming a productive complex improve if the binding...
متن کاملReceptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements
Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription fa...
متن کاملRegulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
Plant shoots display indeterminate growth, while their evolutionary decedents, the leaves, are determinate. Determinate leaf growth is conditioned by the CIN-TCP transcription factors, which promote leaf maturation and are negatively regulated by miR319 in leaf primordia. Here we show that CIN-TCPs reduce leaf sensitivity to cytokinin (CK), a phytohormone implicated in inhibition of differentia...
متن کاملChromatin modification by SUMO-1 stimulates the promoters of translation machinery genes
SUMOylation of transcription factors and chromatin proteins is in many cases a negative mark that recruits factors that repress gene expression. In this study, we determined the occupancy of Small Ubiquitin-like MOdifier (SUMO)-1 on chromatin in HeLa cells by use of chromatin affinity purification coupled with next-generation sequencing. We found SUMO-1 localization on chromatin was dynamic thr...
متن کاملDynamic Histone Modifications in Light-Regulated Gene Expression
Chromatin can be modified via DNA methylation and/or histone marks, and these chemical modifications can affect transcription levels. However, evidence is mounting that specific modifications act not as simple positive or negative regulators, but rather in complex combinations whose effects depend upon context (reviewed in Berger, 2007). New work from Charron et al. (pages nnn) examines dynamic...
متن کامل